分数的基本性质说课稿(精选17篇)
作为一位无私奉献的人民教师,时常需要编写说课稿,借助说课稿可以让教学工作更科学化。那么你有了解过说课稿吗?下面是小编整理的分数的基本性质说课稿,仅供参考,希望能够帮助到大家。
分数的基本性质说课稿 1
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的.,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
分数的基本性质说课稿 2
一、说教材分析
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
二、说教学目标
根据教材分析制定如下的教学目标:
知识与技能:
1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、培养学生观察、分析和抽象概括能力。
过程与方法:
1、让学生经历分数基本性质的探究过程。
2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。
情感态度与价值观:
1、体验合作探究的乐趣,培养学生的团结协作精神。
2、渗透“事物间相互联系”的辩证唯物主义观点。
教学重点:理解分数基本性质。
教学难点:归纳分数的基本性质,并运用性质转化分数。
教具教学准备:
多媒体课件,小棒、纸条、圆形纸片
三、说教学策略
为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:
1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。
2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。
3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。
四、说教学流程
结合五年级学生的理解能力和年龄特征,我将本课的`教学设计为六个环节。
(一)、创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?
“同学们,你们认为猴王分得公平吗?”引发学生的猜想。
(这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)
(二)自主探索,寻找规律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)
1、小组合作 验证猜想
这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。
学生操作验证---集体汇报交流----展示成果
2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。
3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12
4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64
(三)比较归纳 揭示规律
1、出示思考题
1/4=2/8=3/12
比较每组分数的分子和分母:
从左往右看,是按照什么规律变化的?
从右往左看,又是按照什么规律变化的?
通过观察,你发现了什么?
让学生带着上面的思考题,先独立思考,后小组讨论、交流。
2、集体交流,归纳性质。
3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。
4、现在,大家知道猴王是运用什么性质分饼了吗?
5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)
(四)自学例2
1、自学例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?
这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。
(五)多层练习 巩固深化
1、填上合适的数,说说你填写的根据
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。
3、想一想:(选择你喜欢的一道题来做)
与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
(六)本课小结
同学们,通过这节课,你有哪些收获?
学生在交流收获的过程中,培养学生的知识概括能力。
五、说教学评价
1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。
2、多媒体课件的应用,创设生动的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。
分数的基本性质说课稿 3
一、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。
教学目标:
1、知识目标:经历探索分数的基本性质的过程,理解分数的基本性质。能用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生的观察、比较、归纳、总结概括能力。
3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、 直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、 实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、 启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在积极的思维
4. 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的
三、教学组织形式:
师生互动、合作与探索结合
四、教学过程与设计意图
1、故事引入、激发兴趣、揭示课题
以阿凡提讲故事引入,然后小组讨论。
2、动手操作,探索新知
①做一做,折一折。拿出三张同样大的长方形纸,请分别平均折成2份、4份、8份。并按照下图涂色。如果把每张纸都看作“1”,请你把涂色的部分用分数表示出来。学生动手操作、汇报。
根据上面的过程,学生能得到一组相等的分数吗?
②教师引导学生归纳小结:比较这三个分数的分子和分母,它们各是按照什么规律变化的'?分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。
知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?
设计意图:新知识力求让学生主动探索,逐步获取。借助直观图组织学生进行一个动手操作活动,借助直观图形找出相等的分数,使学生能够直观感知。充分调动孩子们去动手、动脑,培养学生的操作能力和语言表达能力。并充分发扬学生的团结协作的精神, 互相帮助,每个人都能在激励中得到不同的发展。
本次活动的安排为学生提供了丰富的学习材料,引导学生联系以往的学习经验,进行学习内容的迁移,自然得到分数大小的变化规律,教师在此也进行了适当的重点点拨。在这一环节的学习过程中,教师注重学生的观察、比较、归纳概括能力的培养。
3、实践游戏、深化理解、巩固练习:
设计意图:练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。学生对于课堂游戏都非常积极,这时,教师应该及时表扬表现出色的学生,也要顾及一些后进生的学习状况,带动后进生的学习激情。
4、全课总结:这节课你有什么收获?
分数的基本性质说课稿 4
把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。分数的基本性质数学说课稿,我们来看看。
分数的基本性质
1.使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题。
2.培养学生观察、分析、思考和抽象、概括的能力。
3.渗透形式与实质的辩证唯物主义观点,使学生受到思想教育。
教学过程
一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。
二、导入新课例
用分数表示下面各图中的阴影部分,并比较它们的大小。
1、分别出示每一个圆,让学生说出表示阴影部分的分数。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2、观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)
(2)阴影部分的大小相等,可以用等号连接起来。
3、分析、推导出表示阴影部分的分数的大小也相等:
(1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的'4个分数的大小怎么样呢?(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。
4、观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)
(2)观察 例2.比较 的大小。
1、出示图:我们在三条同样的数轴上分别表示这三个分数。
2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:
3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。
(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )
(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质
1、观察前面两道例题,你们从中发现了什么变化规律? 分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。
2、为什么要零除外?
3、教师小结:这就是今天这节课我们学习的内容:分数的基本性质 (板书:基本性质)
4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:
四、应用分数基本性质解决实际问题
1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)
(1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。
板书:
教师提问:
(1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )
(2)这个6是怎么想出来的?(这样想:2?=12,26=12,也可以看12是2的几倍:122=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个2是怎么想出来的?(这样想:24?=12,242=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是102=5)
五、课堂练习
1、把下面各分数化成分母是60,而大小不变的分数。
2、把下面的分数化成分子是1,而大小不变的分数。
3、在( )里填上适当的数。
4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?
5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、分母是分子的4倍为:4、8、12、16无数个。
六、课堂总结今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好。
分数的基本性质说课稿 5
。
一、说教材
分数的基本性质是学生在学习了分数的初步认识,掌握了分数的意义,分数与除法的关系,真分数,假分数,带分数的基础上进行学习的。本节课通过设计科普展板的情境学习分数的基本性质,为今后学习分数四则运算和解决有关分数的问题打下基础。
二、说教学目标
(1)知识与技能目标:结合具体情境,理解和掌握分数的基本性质,能运用分数的基本性质找出与一个分数大小相等的分数。
(2)过程与方法目标:在探索分数的基本性质的过程中,培养学生观察、概括的能力,进一步发展学生的数感及合情推理能力。
(3)情感态度与价值观目标:运用分数的基本性质解决实际问题的过程中,使学生感受到数学与生活的密切联系,激发学生的学习兴趣,增强学生的自信心,培养学生的应用意识。
三、说教学重难点:
根据对教材的分析以及学生的特点,本节课我确定的教学重点是:理解和掌握分数的基本性质。
教学难点是:自主探索,发现,归纳分数的基本性质,运用分数的基本性质解决实际问题。
四、说教学方法
新课标指出教师是学习的组织者、引导者、合作者。根据这一理念,本节课我主要采用了情境教学法、引导发现法(实践操作法),这些方法能充分调动学生的积极性,激发学生的求知欲,培养学生的创新精神。
自主探究,合作交流、动手操作是本节课学生学习新知识的主要方法。学生在具体情境中从数学角度发现问题,提出问题,感受数学来自生活的道理。通过动手操作、动脑思考、合作交流使其获得成功的体验,加深对知识的理解和掌握。
五、说教学过程:
教育家布鲁纳说过:“认识是一种过程,而不是一种产品”。根据这一思想,本节课我以学生为立足点,设计如下教学过程:
(一)创设情境,提出问题
新课标提倡要创设情境,激发学生的积极性。课开始,我跟学生交流,你们参加科技活动时都设计过哪些科普展报呢?学生讨论交流后,我利用多媒体课件出示学校科教活动中同学们设计的科普展板的情境图,引导学生仔细观察每块展板文字与图片所占比例,从数学角度提出问题。学生观察思考后可能提出:“每块展板的`图片部分占整个版面的几分之几?”等有价值的数学信息。
爱因斯坦说过:提出一个问题往往比解决一个问题更重要。通过生动形象的情境,让学生从数学角度提出问题,使学生产生认知的兴趣,调动学生自主探索解决问题的热情,从而有效开展数学学习活动。
(二)研究素材,猜想规律
一、教学第一个红点,学习分数的基本性质
教师出示问题:“每块展板图片部分占整个版面的几分之几?”,让学生独立解决。通过思考后学生得出:“把每块展板看作单位“1”,图片部分分别占展板的1/2,2/4,4/8。教师追问学生这三个分数有什么大小关系?学生通过自己的认识猜测大小后,教师让学生利用彩笔和纸条涂一涂,画一画分别表示出这三个分数,通过涂一涂,画一画,让学生展示交流,学生直观的发现这三个分数是相等1/2=2/4=4/8。这时,教师抓住时机提出问题:“分数大小不变,但分子,分母是按照什么规律变化的呢?“先让学生独立思考,小组交流,然后全班汇报。有的学生发现:“1/2的分子分母同时乘2就得到了2/4,分子分母同时乘以4就得到了4/8。而有的学生发现4/8的分子分母同时除以2就得到了2/4,同时除以4就得到了1/2(板书)。教师再写出一组分数2/5=6/15=12/30,让学生举这样的例子。请同学仔细观察这三组相等的分数,发现了什么?通过观察、讨论交流。学生发现:分子和分母同时乘以或除以相同的数,分数大小不变。教师随即向学生揭示,像这样一个分数的分子和分母同时乘以或除以相同的数,分数的大小不变;这就是分数的基本性质。教师引导学生质疑“为什么0除外”学生进行讨论,回答:分数的分子分母同时乘以或除以0,分数就没有意义。我对学生的回答进行肯定,进一步强调分数的基本性质。
数学学习特别关注学生的体验。这样的设计,让学生通过自主探索,动手操作,涂一涂,画一画真正体验分数的基本性质的形成,逐步理解分数基本性质的含义,使学生对所学知识有认同感。同时培养学生的动手操作、独立解决问题的能力。
二、教学绿点,对分数的基本性质进行巩固和应用
出示问题:“根据分数的基本性质,你能写出几个相等的分数”?学生可能写出2/3=8/12=10/15,也可能写出48/64=24/32=6/8让学生进行小组交流,说出自己写相等分数的依据和方法。学生交流后得出:“一个分数根据分数的基本性质,把分子分母同时乘以或除以同一个数,分数大小不变。
通过让学生写出几个相等的分数,使学生能初步应用分数的基本性质,加深对分数进本性质的理解和掌握。
三、讨论交流、验证规律
我引导学生回顾分数基本性质的学习过程,让学生根据规律验证是不是所有的分数经过这样的变化,大小都不变呢?学生对画有12个小正方形的长方形卡片上进行涂一涂、画一画,找出这些小正方形的4/12,1/3,通过涂一涂、画一画学生得出:4/12=1/3,从而进一步验证了分数的基本性质。
这样的设计,让学生通过动手操作,举例验证分数的基本性质,加强对分数基本性质的理解和巩固,培养学生的应用意识。
四、巩固拓展、应用规律
为了使学生掌握新知,锻炼能力,发展思维,我设计了如下练习题:
1、基础练习
自主练习1:先涂色,在比较大小。学生独立完成,使学生加深对分数基本性质的直观认识。
自主练习2、在()里填上合适的数。通过填合适的数,加深学生对分数基本性质的理解。
2、综合练习
自主练习3:通过这道题,使学生将所学的知识应用到实际中去,感受数学来自于生活的道理。
3、新旧对比,沟通联系
让学生回忆商不变的性质,并与本节课学习的分数的基本性质进行比较,使学生发现利用商不变的性质也能解释分数基本性质的存在,培养了学生初步的演绎推理能力,同时加深了学生对知识的理解。
五、总结反思,深化规律。
我带领学生总结本次课堂:同学们通过这节课你有什么收获?让学生从知识、方法、感受三个方面进行交流。
分数的基本性质说课稿 6
一、说学生
学生在学习本课内容之前,已经掌握了分数的基本概念,理解了分数与除法的关系,以及商不变的性质等知识。这些知识为学生学习本课内容奠定了基础。同时,五年级的学生具有一定的分析和解决问题的能力,能够在老师的指导下完成“提出问题—探索解决方案—澄清疑惑—应用知识”的学习过程。
二、说教材
1、教材分析:
《分数的基本性质》是小学数学五年级下册第四单元的重要内容,它承前启后,与整数除法商不变的性质有着密切联系。掌握分数的基本性质不仅有助于理解整数运算规律,还是后续学习约分、通分、分数计算的基础。在整个分数教学中,这一部分内容具有非常重要的意义。
2、教学目标:
结合对教材的分析,我确定了以下教学目标:
知识与技能目标:
分数是数学中常见的一种数,由分子和分母组成。分数的大小取决于分子与分母的比例关系。我们可以通过改变分数的分母和分子,而保持分数的大小不变。这样可以帮助我们更灵活地运用分数,解决各种实际问题。
过程与方法目标:
让学生通过探索和实践,发现分数的基本性质,培养他们的合作意识和团队合作能力。通过小组合作的方式,让学生共同思考、讨论,逐步总结和归纳分数的规律和特点。这样的教学方法可以培养学生的逻辑思维能力和问题解决能力,同时促进他们将所学知识灵活运用到实际生活中的能力。
情感态度与价值观目标:
让学生在主动探索新知识的过程中获得成功的体验,体会分数的基本性质在生活中的应用。
3、教学重点和难点:
重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
难点:学生通过猜想和动手验证,抽象概括出分数的基本性质。
4、教学准备:
学生准备三张形状大小一样的纸片、彩笔,老师准备课件、分数卡片。
三、说教法学法
教法:
本着 “以学定教”的思想,我以自主探究为主线,以发展创新为宗旨,主要采用创设情境、引导探究、引导发现、组织讨论、组织练习等教法,让学生全程、全面、全心地参与到每一个教学环节中。
学法:
新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。当然,由于学生思维方式的不同,教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。
四、说教学过程
为实现教学目标,我将本课的教学程序设计了以下四个环节:
(一)创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事:猴王做了三个大小一样的.饼,它先把第一个饼平均切成两块,分给猴1一块;又把第二个饼平均切成四块,分给猴2两块;接着又把第三个饼平均切成八块,分给猴3四块。听完故事,我问道:“同学们,哪只小猴分的饼最多?”来引发学生的猜想。
设计意图:“疑是思之始,学之端”。这样设计,旨在把枯燥的数学知识贯穿于学生喜爱的故事情境中。引发学生的学习兴趣,激发他们学习的欲望。
(二)自主探究,寻找规律
活动一:动手实践,验证猜想
让学生动手折一折(将每张纸分别平均折成两份四份和八份)、涂一涂(用笔将其中的一份两份和四份涂上色)、比一比(比较涂色部分的大小),发现三只小猴分的饼是一样多的。同时得到三个相等的分数: = =
活动二:观察比较,发现规律
请观察以下三个分数:$frac{2}{3}$,$frac{4}{6}$,$frac{6}{9}$。它们的分子和分母都不相同,但它们的值相等。请思考这三个分数之间的变化规律,并与小组成员讨论。
活动三:对比归纳,提示规律
1、运用课件引导学生分别从左往右看,从右往左看:分数的分子和分母是怎样变化的?
2、小组合作,归纳出分数的基本性质。
3、自学教材,对比分析,并举例说明,着重理解为什么要“0除外”?
活动四:应用巩固,体会规律
我以学生为主角,把全班学生平均分成了两大组,请其中一组起立。站起来的学生人数占全班人数的几分之几?引导学生用不同的分数来表示。
设计意图:通过组织四个不同形式的活动,帮助学生培养自主学习的习惯和分析问题的能力。在活动中,采用多种评价方式,及时肯定学生的努力并激励他们继续学习。
(三)多层练习,巩固深化
1、例2:让学生运用分数的基本性质把 和 化成分母是12而大小不变的分数。
2、明确《猴王分饼》的道理,并拓展延伸:如果小猴子要五块、六块、十块……又该怎么分呢?
3、考虑到学生素质的差异,我设计了四组分层闯关训练。
我设计这个任务的初衷是希望学生能够运用他们所学的知识解决现实问题,实现既定的目标。通过这样的任务,不仅能够激发学生的学习兴趣,还能够让他们有机会提升自己,实现优秀学生的突出表现,同时也有助于减轻学生的学习负担。
(四)课堂小结,加深理解
让学生畅谈收获,并用分数来表示本节课所体验到的收获与快乐。这样设计,不仅是对自己在课堂上知识获取的一个回顾,同时也评价了自己在课堂上的表现,对教师的教学行为与课堂的教学效果也给出了评价。
五、说板书设计:
板书设计突出了重点,有助于学生归纳、整理知识,形成知识网络。
六、说反思
反思本节课的教学,我认为教学设计体现了“趣”、“实”、“活”三个特点。故事引入,激发了学生的学习兴趣;通过折、涂、比等多种活动,为学生搭建了一个自主探究的活动平台;课上得富有实效,学生体验到了成功的乐趣。
分数的基本性质说课稿 7
教学目标:
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:
课件、长方形纸片、彩笔。
教学过程:
一、创设情境,忆旧引新
孙悟空师徒四人来到一个小国家----数学王国,猪八戒肚子很饿, 悟空就对八戒说:“我给你10块饼,平均分2天吃完,怎么样?”八戒一听嚷道:“太少了,猴哥欺负我。”悟空眼睛一动说道:“那我就给你100块饼,平均分20天吃完,可以了吧。”八戒一听就乐了:“太好了!太好了!这回每天我可以多吃些了!”
同学们,你们认为八戒说得有道理吗?(没道理)
【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】
为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)
先算出商,再观察,你发现了什么?
被除数和除数同时扩大(或缩小)相同的倍数,商不变。
同学们,再想一想除法与分数有什么关系,并完成这些练习吧。
8÷15= 3÷20= 14÷27=
二、动手操作 、导入新课
同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)
我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想与你每人一块,而且大小要是一样,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?
我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?
我如果想我想与你每人四块,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。
【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】
三、探索分数的基本性质
你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?( )
1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的'变化规律吗?
2、学生交流、讨论并汇报,得出初步分数的基本性质。
分数的分子、分母同时乘以或除以相同的数,分数的大小不变。
3、将结论应用到
(1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。
(2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)
(3)是怎样变化成与之相等的 的?
(4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)
4、综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗? (不能同时乘或除以0)为什么?
5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?
四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)
有位老爷爷把一块地分给三个儿子。老大分到了这块地的 ,老二分到了这块地的 。老三分到了这块的 。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。( )
分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。( )
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。( )
⒍小结。
从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】
五、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?
分数的基本性质说课稿 8
一、教材分析
1、 教材内容
《分数的基本性质》这一课是课改版小学数学教材第十册的教学内容,学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种变与不变中发现规律。
2、知识间的联系:
七册:商不变性质 十册:分数的基本性质 十二册:比的基本性质
同时《分数的基本性质》也是学生学习分数加减法的基础。所以,本节课的教学内容具有比较重要的地位。
二、指导思想与设计理念
新的课程标准提出:教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。
根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,本课让学生经历:旧知唤醒(复习商不变性质与分数与除法的关系)新知猜想(分数中是否有类似的性质,如果有,是一个什么样的性质?)实践探究(看图分类)得出结论(研究卡)深化认识(对结论的理解,尝试练习,理解其中的变与不变,能用字母来表示式子)练习提高(基本题、综合题、加深题)数学建模(用字母来表示分数的基本性质)建立联系(分数的基本性质与商不变性质的联系)。让学生对于分数的基本性质能在数学的层面上有一个较为完整、清晰与明确的掌握。
三、学情分析
前测:(问卷形式)
问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。
2:试着做一做下面这些题比较大小:
4/7○2/7 1/2○2/4 3/5○9/15
分析:暂无
结论:暂无
四、教学目标及重难点
教学目标:
1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。
2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。
教学重点:
理解掌握分数的基本性质,它是约分,通分的依据
解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。
教学难点:
理解和掌握分数的基本性质。
解决策略:通过初步建立数学模型,使学生对分数的基本性质这个结论能够摆脱表象的'依赖,即对具体事物或图例,从而从而成熟地思考、理解。
五、教法学法:
教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。
学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、教学过程
一、迁移旧知.提出猜想
1、回忆旧知
活动:猜信封。通过猜信封中的数或算式,引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:
被除数除数=
通过谁能说一道与23商一样的除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想:
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
二、验证猜想,建构新知
环节1、 看图分类
下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。
通过动手操作,使学生不仅明白它们相等,渗透它们是因为什么而相等的为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。
环节2、 讨论方法
师:你是怎么判断它们相等的?
师:它们相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
通过让学生表述怎么判断它们相等的锻炼学生的表达能力。
3、研究规律
第一层:师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?
利用研究卡进行研究。
确定的研究对象
分子和分母同时乘上或者
除以一个相同的数
得到的分数
研究对象与得到的分数相等吗?
相等( )不相等()
猜想是否成立?
成立( )不成立( )
充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)
师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)
师:分数的基本性质与商不变性质有什么联系?
环节4、质疑完善
3/4 = 3( )/ 4( )
师:括号中可以填哪些数?
预设:可以填无数个数
师:如果只用一个数来表示,填什么数好?
预设:字母
师:这个字母有什么特殊要求吗?(0除外)
得到一个初级的数学模型。3/4= 3X/ 4X(X0)
让学生打开课本进行阅读、内化,并想一想还有什么问题吗?
通过这个环节的练习,进行第一次数学建构。
三、 练习升华
通过以下练习进一步巩固分数的基本性质,使学生初步利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化为分母为12而大小不变的分数。
3、把2/3和3/4都化为分子为6而大小不变的分数。
4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?
5、 和 哪一个分数大,你能讲出判断的依据吗?
四、总结延伸
师:这节课学了什么?
师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?
A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0)
在这个环节中,数学的模型才真正的建立。模型一方面便于学生记忆,便于学生理解意义,而且数学化地表示数学也是高年级学生所必备的。
分数的基本性质说课稿 9
一、 教材分析
《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。
二、教学目标
根据教材内容及学生的认知水平,我制定了以下教学目标:
1、使学生理解与掌握分数的基本性质。
2、培养学生观察、比较、分析、概括等方面的能力。
三、教法和学法
为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。
新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。
四、教学过程
结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。
(一)、创设情境、引发猜想
首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。
“同学们,你们听完故事后,觉得哪知猴子分得饼最多?”
一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。
(二)、动手操作、初步感知
我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:
(三)比较归纳、揭示规律
(1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的`引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。
(2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。
(3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。
(4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。
课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。
(四)多层联系、巩固深化
练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。
五、板书设计
说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。
总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。
我的说课到此结束,谢谢大家。
分数的基本性质说课稿 10
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
本节课选自人教版小学数学五年级下册第四单元第三节《分数的基本性质》,是在学生初步认识了分数的意义、分数与除法的关系、以及整数除法中商不变的规律的基础上进行学习的,而本节课也是后续学习约分和通分的基础,因此理解并掌握该性质尤为重要。
二、说学情
接下来谈谈学生的实际情况。五年级的学生学习态度端正,有着良好的学习习惯,而且各个方面都已经发展的比较完善,具备一定的分析能力和解决问题的经验。但是还具有活泼好动的特点,所以我会采用多种教学方法。
三、说教学目标
根据以上对教材和学情的分析,我制定了如下三维教学目标:
(一)知识与技能
结合具体情境,理解分数的基本性质,会应用分数的基本性质进行分数的改写。
(二)过程与方法
经历自主思考、小组讨论的过程,提高观察、分析、推理、总结的能力。
(三)情感、态度与价值观
体验数学与生活的联系,提高对数学的学习兴趣。
四、说教学重难点
在教学目标的实现过程中,教学重点是分数的基本性质,教学难点是分数的基本性质的.探究过程。
五、说教法和学法
在教学中我始终以学生为本,以学生为立足点,借助多媒体教学,引导学生动手操作、观察、探究,充分调动学生学习的积极性。本节课我将主要采用创设情境、动手操作、自主探究的教学方法,把课堂还给学生,充分调动学生的眼、手、脑等感官参与认识活动,享受学习的乐趣。
六、说教学过程
下面重点谈谈我对教学过程的设计。
(一)导入新课
首先是导入环节,我将采用创设情境的导入方法。
熊妈妈按不同分法给三个孩子分三块巧克力,第一块平均分成两份,给老大一份;第二块平均分成四份,给老二两份;第三块平均分成八份,给老幺四份。提问:哪个孩子分的巧克力更多?然后说明通过这个故事学习一个新知识,进而引出课题。
通过创设情境,利用一个小故事,将比较抽象、枯燥的数学知识以生动有趣的形式展示出来,一方面可以吸引学生的兴趣,有利于更好的展开课堂教学;另一方面可以淡化学生对数学知识的陌生感,更好的体会数学来源于生活,应用于生活。
(四)小结作业
在课程接近尾声时,我会找学生总结今天的学习内容。这样的设置可以让学生再次回忆本节课的知识,并且提升学生的归纳总结能力。
课后作业设置为小游戏,同桌之间分别写几个不同的分数,让对方写出与其分母不同但大小相同的分数。这样的设置不仅能进一步巩固本节课的学习,还可以活跃学生的思维。
七、说板书设计
我的板书设计遵循简洁明了、突出重点的原则,以下是我的板书设计:
分数的基本性质说课稿 11
我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、说教材分析
本节内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、说学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的'大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、说教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1.理解与掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识与理解变与不变的辩证关系。
3.受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现与归纳分数的基本性质,以及应用它解决相关的问题。
四、说教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、说教学过程
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结与确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
分数的基本性质说课稿 12
这天我说课的资料是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学过程”五个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生带给充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的构成过程,感受验证、转化等数学思想方法。
二、说教材
分数的基本性质是九年义务教育小学数学第十册第四单元的资料,这一部分教学资料是在学生学习了分数的好处、分数与除法的关系、商不变的规律等知识的基础上进行教学的。在分数教学中占有重要的地位,它是约分、通分的基础。根据教材资料和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,明白分数基本性质与整数除法中商不变规律的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、分析、比较、决定及动手实践的潜力,进一步拓展学生的思维。
2、情感、态度:激发学生积极主动学习的情感状态,养成注意倾听、观察事物的学习习惯。
3、教学重点和难点:理解和掌握分数的基本性质的概念,运用分数的基本性质,把一个分数化成指定分母而大小不变的分数。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在用心的思维
4.树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以到达促进学生学习方式的转变,实现教学目标的目的
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师透过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,到达检验自学的目的。
五、说教学程序
依据新的教学理念及学生的认知特点,将本课的教学模式制定为:
第一、以故事导入,培养学生的学习兴趣。在进行备课时,我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的`学习兴趣。为此,我王大爷分地的故事,让王大爷给三个儿子分地,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,这样一来,学生学习数学的兴趣必然提高,学习的积极性也会空前高涨。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原先,三个儿子分到的地实际上是一样多的,只但是是平均分的分数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的潜力。
第二、发挥群众优势,培养学生的合作潜力。为了有效解决教学中“少数学生争台面,多数学生做陪客”的现象,我在教学中也引入了小组合作学习的形式,提高学生学习的主动性,使学生在获取数学知识的同时,构成良好的人际关系,促进学生的全面发展。为此,在观察相等分数的变化规律时,我让学生充分展开讨论。大家你一言我一语,一点一滴,逐步发现从左往右,分数的分子分母分别依次乘2、乘4、乘8,而分数的大小不变的变化规律。从而慢慢地引出了分数的基本性质。
第三、精心设计练习题,提高学生解题潜力。数学教学,做题目是其中最重要的一个方面。但传统教学教师往往进行所谓的题海战役,让学生反复做、重复做,这样不仅仅做累了学生同时也做怕了学生,消磨了学生学习的积极性。所以如何使学生愿做、乐做,同时又能到达教学目标,提高学生的数学综合潜力,是摆在我们面前的一个重要课题。为此,在教学《分数的基本性质》时,我也精心设计练习题。首先是题型变化丰富。练习中,我安排了一些决定题、口答题。题型的丰富不仅仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的潜力。
总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能到达理想的教学效果。
分数的基本性质说课稿 13
教学目标
(一)理解和掌握分数的基本性质。
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)理解和掌握分数的基本性质。
(二)归纳分数的基本性质,运用性质转化分数。
教学用具
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给
学具:每位同学准备三张相同的长方形纸片。
教学过程设计
(一)复习准备
1.口答:(投影片)
根据120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:分数有一条类似于除法有商不变性质的性质,即分数的值不变。当一个分数被化简或扩大倍数时,它的值不会改变,只是表达的方式不同而已。这是因为分数是由分子和分母组成的,它们之间的比例关系确定了分数的值。因此,无论分数怎样化简或扩大倍数,只要分子与分母的比例不变,分数的值就保持不变。
(二)学习新课
1.分数基本性质。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:分别将这些形状平均分成2份,4份和6份,并在其中的1份,2份和3份上标记颜色或填充阴影。然后用分数表示涂色部分。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
2.把一个分数化成大小相等,而分子或分母是指定数的分数。
分子应怎样变化?谁随着谁变?
化?谁随着谁变?
教师:上面两个分数的变化依据是什么?
(2)口答练习:(学生口答,老师板书。)
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
(三)巩固反馈
1.口答:(投影片)
2.在括号里填上“=”或“≠”。(投影)
3.在()里填上适当的.数。(投影)
4.判断正误,并说明理由。
(四)课堂总结与课后作业
1.分数基本性质。
2.把分数化成大小相同而分子或分母是指定数的分数的方法。
3.作业:课本108页练习二十三,1,2,4,5。
课堂教学设计说明
分数基本性质是指在分数的大小不变的情况下,研究分子和分母的变化规律。在教学中,可以通过引导学生观察、对比、分析分数的变化,让他们在变化中发现规律、总结分数的基本性质。设计思考题可以帮助学生运用规律来改变分数。通过这样的方式,可以加深学生对分数基本性质的理解。
学生掌握了分数的基本性质之后,可以通过举例讨论的方式来加深对商不变性质的理解。通过让学生举例讨论,可以帮助他们更好地理解分数的基本性质和商不变性质之间的内在联系,从而更好地将新旧知识融合在一起。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
学生将通过一系列的活动来学习分数的基本性质。首先,他们会通过实际操作认识到分子、分母不同的分数可能是相等的,从而培养他们的直观认识。接着,通过观察和总结,学生将探索分子和分母的变化规律,从而深入理解分数的运算规律。最后,学生将总结分数的基本性质,并通过商不变性质来解释这些性质的重要性。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
分数的基本性质说课稿 14
一、说教材
《分数的基本性质》是九年义务教育六年制小学数学第十册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6 4/8四个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这四个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。
1.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。
2.想--1/2、2/4、3/6 、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?
3.问—从"1/2=2/4=3/6=4/8"中,你发现了什么?
4.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:
(1)有利于知识的迁移。
让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。
(2)能发挥学生学习的主动性。
通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。
(3)提高了学生的学习能力。
通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探究问题,培养学生概括问题的能力和解决问题的能力。
二、说教学目标
以上各个教学环节的设计体现如下几点教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
三、说教法
本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的.教学模式进行教学。
1.创设情境,复习迁移。
为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:课开始发给每位学生四张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗? 这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.设疑激思,获取新知。
"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、3/6、 4/8这些分数有什么关系?
(学生会说这四个分数的大小相等。)
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(如果学生写错或写不出,待得出分数基本性质后再写)
(3)从"1/2=2/4=3/6=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
(4)你对上面这句话觉得有什么问题吗?
(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)
最后,让学生完整地概括出分数的基本性质。(老师揭示课题)
这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
3.深化概念,及时反馈。
为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:
1.下面各式对吗?为什么?(让学生用手势表示对错)
(1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而大小不变的分数。
4.把下面大小相等的两个分数用线连接起来。
4/5 1/6 4/9 4/6 12/16
3/4 2/3 20/25 6/36 8/18
分数的基本性质说课稿 15
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
依据新的教学理念及学生的认知特点,将本课的教学模式制定为:
总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。
1、情境的创设:“爱因斯坦说:“兴趣是最好的老师。”新课标提倡要关于创设情境,小学生天生具有好奇好胜的心理特征,而这些特征往往是学生对数学产生兴趣的导火线。通过和尚分饼,创设问题作为引子贯穿全课。利用课件中生动的动画,创设一种和谐愉悦的气氛,激发学生的学习兴趣,这点在这节课中我个人觉得达到这个目的。
2、探究活动与数学逻辑思维过去我们常为学生设计相同的学习方式并要求学生按照教师设计的流程展开学习。比如这节课的验证猜想中一本来我是设计了让学生按折、画、剪、比的步骤一步一步来引导学生操作,这样的设计看上去会很热闹,其实学生的操作依然是被教师牵着鼻子走。后来,为了给学生创设个性化的学习空间,我重新设计:“课桌上的信封里放着一些材料,你可以根据自己的.需要选择合适的材料来验证自己的猜想,如果你觉得不需要材料,当然也是可以的。”这样的设计能够给予学生一定的探究空间,也增添也活动的趣味性和挑战性。但是在实际教学过程中,由于本人教学能力不够熟练,学生紧张,表现出来的并不像我所想像的那般,但至少可以算已是对传统的一种大胆的突破吧。
在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让学生展开思维,大胆思考,学生也提出了不少有价值的问题,如:这相同的数能不能包括小数,如果分数的分子和分母同时乘上或除以一个小数,那所得的数还是不是分数呢?为什么要零除外?大小不变能不能说成结果不变呢?等等一系列有价值的问题,并重视引导学生采用举例说明的方法来解决问题。我想这可能也是我这节课比较有收获的一个环节了。能真正地体现自主开放,转变学生的学习方式。
3、小组合作交流我们班由于在开展课题研究之前,很少可以说几乎没有合作的习惯。而这学期的小组合作的训练方面也做得不够,只能说是交流多于合作,所以在教学过程中出现了一些我预测不到的情况。在本节课的设计中有两处合作交流:一个是在验证猜想时合作,由于对小组的要求比较复杂,所以我运用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的方向,并且能对合作的效果加以对照,提高合作的有效性。另一个是在发现规律时合作探究,交流沟通。这时由于本班学生的实际,学生基本上处于一种交流的状态,不能说是合作了。有待今后对这个问题进一步努力。
4、有效地处理课堂生成资源当教师个人的设计意图与学生的实际的实际不相符合,而学生表现出来的行为或语言又是有价值的,这时教师该怎么处理,我认为这就是对课堂生成资源的把握问题了。另一个课堂生成点在其中有一个学生运用了商不变的性质来解释了1/4=2/8=4/16的原因,我却忘了将本节课的一个培养学生迁移类推能力的知识点遗漏了,那就是商不变的性质与分数的基本性质有什么联系与区别?这是一个很具有探究交流价值的问题。可惜我在预设与生成的把握方面做得比较欠缺,暴露出的问题也正是今后必须要努力去学习的地方。
5、练习的设计为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本案例中设计了:
①有探究结束后的分辨是非。
②有新课中的尝试性练习。
③有游戏活动。
较好地把独立思考与合作交流结合起来,学生学得轻松、愉悦。但在学习新知的过程中如何与练习有效地融合在一起,这也是一个很值得我个人反思的地方反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
分数的基本性质说课稿 16
一、教学内容的说明
《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。
二、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。
三、教学目标
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
1.使学生理解与掌握分数的基本性质,能运用它改变分数的分母与分子,而使分数的大小不变。
2.培养学生观察、比较、分析、概括等方面的能力。
3.通过实践活动,鼓励学生动手进行科学的验证,培养其勇于探索,勇于创新的意识。
四、教学重点、难点
教学重点:
理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点
学生通过猜想和动手验证,抽象概括出分数的基本性质。
五、教法学法的选择
教法:本着“以学生发展为本”、“以学定教”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。
学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的.目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、教学过程的设计
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下内容:
1.创设情境
片断一
师:我们班有男生多少人?女生呢?,你能说出我们班男生和女生的人数比吗?
生:男生和女生的人数比是:35:40。
师:你们认为这个比还可以……
生:化简单一点。
师:具体说说你的想法。
生:根据比的基本性质,把比的前项和后项同时除以5,得到7:8。
师:你怎么想到除以5的?
生:因为35和40的最大公约数是5。
师:说得很好!大家同意吗?
生:同意。
师:7:8,最简单了吗?
生1:是,因为7和8已经是互质数了。
生2:互质数就只有公约数1了,因此它是最简单的比了。
师:说得好!这里的7:8,前项和后项是互质数,你能给它取个名称吗?
生1:就叫最简单的比。
生2:我认为应该叫最简单的整数比更好。
师:为什么?
生:因为有时还可能出现小数或分数的比,也是很简单的。
师:你们大家都同意吗?那我们就把这样的比称为最简单的整数比。你能再说一个最简单的整数比吗?
生:2:3、1:2、8:9……
师:对于最简单的整数比,你们都理解了吗?
生:理解了。
师:说说你们的理解?
生1:首先前项和后项必须是互质数。
生2:那前项和后项就必须是整数。
生3:其实,它还是一个比。
师:同学们都说得很好,那12:18是最简单的整数比吗?
生:不是。
师:为什么?你是怎么想的?
生:12和18有公约数6。
师:那也就是说可以把这个比进行化简,把它化成最简单的整数比,对吗?你们想不想试一试。
…反思:以班中男女生人数为新知的切入点,通过师生互动、生生互动,理解最简整数比的含义,同时放手让学生利用新知去尝试解决把一个比化简,体现了在做中学的理念。
片断二
师:你能说说刚才的化简,用了什么知识?
生:根据比的基本性质,把比的前项和后项同时除以一个相同的数,就可以化简了。
师:要是给你一个分数或小数的比,你觉得还能再同时除以一个相同的数吗?
生:不能
师:为什么?
生:我觉得要将一个分数或小数比化简,必须同时乘一个相同的数,只有这样才能转化为整数比。
师:说得真好,还用上了转化。你们想不想试一试把一个分数比或小数比化简?谁来说一个分数比?
生::
师:再说一个小数比?
生:1.8:0.09
师:那,咱们先来试一试。
反思:对于分数比和小数比的化简,确实有些难度,但由于学生已经初步有了化简比的方法,因此教师可以先让学生去试一试,这样学生的学习就会更主动。
片断三
师:谁先来说说你的想法。
分数的基本性质说课稿 17
一、说教材
《分数的基本性质》是在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据,也是进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质是该单元的教学重点之一。
二、说学情
学生在三年级上学期初步学习了分数的概念,以及同分母分数的比较大小。在本学期,他们又学习了因数、倍数等概念,并掌握了2、3、5的倍数的特点,为接下来的学习打下了基础。五年级学生已经养成了良好的合作学习习惯,具备一定的问题分析和解决能力。再加上他们积累的生活经验,他们能够在老师的引导下完成“提出问题——探索解决——解释理解——应用运用”这一完整的学习过程。
三、说教学目标
根据新的教育理念和教学要求,为了更好地促进学生在数学思维、问题解决能力以及情感态度等方面的全面发展,结合本节课的内容和学生的实际情况,制定如下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生通过实际观察、提出问题、探索问题并寻找解决方案的过程,培养其观察力、探索精神和问题解决能力。在不断观察、猜测、验证的活动中,引导学生形成自主探究的学习模式,培养其整合信息、推理和概括的能力,激发其解决问题的创造性思维。
情感与态度:学生在探究分数基本性质的活动中,通过实际操作和讨论,逐渐掌握了分数的加减乘除等运算规则,并体会到数学的严谨性和逻辑性。在这个过程中,他们建立了自信心,感受到了数学的魅力和实用性。同时也意识到数学是一门与现实世界紧密联系、不断发展变化的学科,培养了辨证唯物主义的思维方式。这样的学习体验将激发学生对数学的兴趣,激发他们探索数学世界的热情。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生通过实际操作和探索,发现分数的基本性质,并学会运用这些性质解决问题。
教学准备:三张同样大小的长方形纸张,彩色笔
四、说教学方法
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的'基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
五、学法
数学学习应该是一个积极参与的过程,而不仅仅是简单的模仿和记忆。学生在学习数学时,应该通过动手实践、自主探索和合作交流来加深理解。在学习例题时,学生可以采用自学尝试法、自主探究法和合作交流的方式,尝试将分数化成分母不同但大小相同的分数,并完成相关练习以检验自己的学习成果。通过观察、比较、提出问题并解决问题,学生可以进行自主探索和合作交流,发挥他们的主体参与作用,激发学习兴趣,让他们通过成功体验来提高数学学习的效果。
六、说教学过程
为了全面、为了准确引导学生探索发现分数的基本性质,达到教学目标,我设计了以下五个教学环节,紧紧抓住学生的思维生长点:第一步:激发兴趣通过趣味性的问题或故事引入,让学生主动参与思考,激发对分数的兴趣。第二步:探索规律引导学生探索分数的基本性质,让他们通过实际操作和讨论发现分数的规律和特点。第三步:概念建构帮助学生建立起分数的基本概念,理解分子、分母的含义,掌握分数的大小比较和运算规则。第四步:巩固训练通过练习和实例让学生巩固所学知识,培养他们运用分数进行计算和解决问题的能力。第五步:拓展应用引导学生将所学知识运用到实际生活中,培养他们分析和解决问题的能力,提升对分数的理解和运用水平。
1、创境设疑:回顾旧知,引发思考
2、自主探究:动手实践,发现规律
3、交流归纳:揭示规律,巩固深化
4、分层精练:多层练习,多元评价
5、感悟延伸:课堂小结,加深理解
第一环节:创境设疑
在六一儿童节即将到来的时候,妈妈买了一个大蛋糕准备给孩子们庆祝。蛋糕刚出炉,妈妈开始切分蛋糕,但孩子们却担心妈妈会不会分得公平。妈妈笑着说:“我是公平的,我会按照规矩来分给大家。”孩子们却纷纷表示要当小法官,来监督妈妈是否真的公平地分配蛋糕。这样一场有趣的蛋糕分配情景,让孩子们既期待又好奇,也让他们在游戏中学到了公平与合作的重要性。
第二环节:自主探究
通过折纸、学生通过涂色的动手操作活动,亲身体验并感知分数的变化规律,为后续学习打下基础。老师通过分层提问的方式,引导学生逐步探索,合作学习,初步理解分数的基本性质。同时,强调了0除外的特殊情况,让学生体会解决问题的策略多样性,培养他们的实践能力和创新精神,促进学生合作意识的培养。
第三环节:交流归纳
在这一环节,老师引导学生通过观察、分析和探索,不断提出新问题,探讨分数的基本性质。通过质疑和知识迁移,引导学生理解分数的基本性质与商不变性质的联系。帮助学生运用分数与除法的关系,以及整数除法中商不变的性质,来解释和说明分数的基本性质。这样的设计可以让学生体会到数学知识之间的内在联系,培养他们观察、探索、抽象和概括的能力,同时培养他们发现事物之间相互联系的能力,促进他们的综合思考和分析能力。
第四环节:分层精练
这个环节让学生通过实际操作来感受和体验分数的基本性质,深入研究分数的特点。通过分层练习,关注每个学生的学习进度,确保每个学生都能得到有效的指导和提升。教师根据学生的实际情况,设计了由简单到复杂的练习,让学生逐步掌握知识,感受学习的乐趣。基础练习让大多数学生都能轻松完成,综合练习则能让更多学生取得成功,拓展练习则可以留作课后自主探究,促进学生更深层次地理解和掌握知识。
第五环节:感悟延伸
通过小结、学生在互相交流、相互帮助的过程中,可以加深对知识的理解和应用。通过与他人的讨论,学生可以对所学知识进行系统回顾,发现并弥补自己的知识漏洞,提高自己的知识整合能力。这种互助互学的方式不仅可以加深对知识的理解,还可以培养学生的合作意识和团队精神。
总之,本节课的教学遵循着“学生是探索的主体”的教学理念,针对全体学生展开。我们充分引导学生进行实验探究,自主思考,质疑并延伸问题,鼓励合作交流,让每位学生在探索中感受到数学与日常生活的紧密联系,体会到学习数学的乐趣,培养创新精神与实践能力。